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Relation between pressure and fractional flow in two-phase flow in porous media
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We study average flow properties in porous media using a two-dimensional network simulator. It models the
dynamics of two-phase immiscible bulk flow where film flow can be neglected. The boundary conditions are
biperiodic, which provide a means of studying steady-state flow where complex bubble dynamics dominate the
flow picture. We find fractional flow curves and corresponding pressure curves for different capillary numbers.
In particular, we study the case of the two phases having equal viscosity. In this case we find that the derivative
of the fractional flow with respect to saturation is related to the global pressure drop. This result can also be
expressed in terms of relative permeabilities or mobilities, resulting in an equation tying together the mobilities
of the two phases.
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[. INTRODUCTION poral evolution of the three regimes in drainage: viscous fin-
gering, capillary fingering, and stable displacement. The ma-
jor important innovation in the present work is the change of

Two-phase displacements in porous media have duringoyndary conditions. Earlier there was an inlet and an outlet
the past decades been studied by experimental WbH8|,  petween which an invasion process was simulated. Now bi-
numerical simulation$3—8], statistical model$9—-11], and  periodic boundary conditions are used, which make the sys-
differential equationg12]. The work in this field has been tem closed, and the system is run for a longer time. This
motivated by applications in oil recovery, and also hydrol-gives average statistical flow properties in a different way,
ogy. The complex nature of transport processes in porougng it is the biperiodic boundary conditions that are the ma-
media makes it worthwhile to approach the problem in manyq; gifference compared to other somewhat similar network
ways. models[7,8], see Sec. Il.

In this paper we present simulation results based on @ The nature of the simulations is such that the systems
network simulator of a porous mediur3]. The model is on

. . e - ble mixture. The notions of drainage and imbibition are
in the network. The generic building blocks are tubes, whlcr}10t g

constitute all interpore connections and which hold the pore- adequate to describe the flow. On pore level there is a
pore . POre% s ntinuous process of breaking up and merging together
space volume. As will become clear in Sec. Il, each tub

allows for a maximum of two fluid-fluid interfaces. This cap-eDUbbles' Experimental ‘work showing similar - complex

tures essential properties of porous media throats. These al%gbble dynamics have been done in two-dimensional eiched
pects set the level of coarse graining of the system. There h&4@ss network$19-21 _
been numerous work done on lower length scales and me- The basic results t_hat are presented are fractional fl_ow
soscale methods, such as lattice gas metf®dd]. An over- curves.of the nonwetting phase as a funct|o_n of nonwetting
view over some different scale models can be founflLB. saturation. Also we present the corresponding global pres-
On the other hand, compared to large scale reservoir simulgure drops that are applied. This is done for six different
tions [16], our work is detailed and it may provide average capillary numbers. The fractional flow and pressure drop can
properties that can be used as input parameters in work dpe transformed into the terminology of relative permeabili-
larger scales. Currently, results are mainly generic, and morées and mobilities.
detailed work is required to produce results that are valid for Our simulations show that for the case where the two
specific porous media. In particular, simulations in three diphases have equal viscosity, there is a relation between frac-
mensiong3D) are required. tional flow and pressure. This relation can be expressed in
In general, the model can be used for three-dimensionahe form of a first order differential equation; the derivative
porous media and irregular node positions. This follows fromof the fractional flow with respect to saturation is connected
the fact that each interpore throat of the real porous mediurto the global pressure drop, also as a function of saturation.
is replaced by a tube in our model. However, in this paper we The paper is organized as follows. Section Il provides a
restrict ourselves to the study of flow in 2D using a regularbrief description of the model. Section Il concerns simula-
network with random properties. Previous use of the modetion results, starting out with describing the nature of the
in 2D has been in the simulation of drainager,18. The  simulations. Thereafter, Sec. Il A deals with fractional flow
previous simulations have successfully reproduced the temand pressure curves, in general, Sec. Il B discusses how
these curves depend on the capillary number, and Sec. IlI C
establishes the relationship between the derivative of the
*Electronic address: Henning.Knudsen@phys.ntnu.no fractional flow and the global pressure drop. Finally, in Sec.
TElectronic address: Alex.Hansen@phys.ntnu.no IV we make concluding remarks.
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Il. MODEL The volumetric flux through one single tube is given by

The basis for the present work is a network model thatthe Washburn equation for capillary floj@3],

represents the two-dimensional porous medium. The network K r2
model is based upon that presented by A&eal. [17,18. q=—— —(Ap—po), 2)
The geometric representation of the porous medium and the perr d

possible spatial fluid distribution is essentially unchanged. o o .
Some changes have been made though. These concern ¥Berep. is given by Eq(1). Considering the tubes as cylin-
boundary conditions and detailed rules for the motion of in-drical with radiusr, the fractionsr?/d is the cross-sectional
terfaces. All the details concerning these points have bee@rea divided by the length of the tube. The permeability of
presented in a previous stufty3]. Therefore we will restrict  the tube isk=r?/8, which is known from Hagen-Poiseulle
ourselves here to an essenti?ﬁu’m'eof the phys|ca||y im- flow. When two fluids are present in a tube, an effective
portant aspects and omit the computational details. ViSCOSity Mgt is used. The viscosities of the two fluids are
The porous medium is represented by a square lattice oFeighted according to their volume fraction within the tube
cylindrical tubes, tilted 45° with respect to the overall flow at the beginning of the time step to giye.s. Ap is the
direction. These tubes contain the volume of both throats anBressure difference between the ends of the tube.
pores. The points where four tubes meet are referred to as In @ network of tubes, the net flux passing through the
nodes. Randomness is incorporated in the system by allowtodes must be zero. There is a pressure assigned to each
ing the position of each node to be randomly chosen withihode. Using the Washburn equati¢®) for the flow in a
the interval=30% of the lattice constant away from its re- Single tube, the flux conservation gives a large system of
spective lattice point. From these positions the distage linear equations in the pressure variables. The equations

between connected nodeandj is calculated for all andj. ~ Must be solved using the desired boundary conditions, which
Further, the average radius of each tube is chosen random#e Will describe shortly. .
from the interval (0.,0.1d+0.3d;;), whered is the average The traditional use of network simulators has been the

distance between the nodes, i.e., the lattice constant. Clear§tudy of invasion processes. Usually the first row of nodes is
other topologies in 2@or in 3D) can be chosen. However, as an inlet row where all the nodes have the same fixed pres-
a first approach to the study of the relationship between otheture. Similarly the last row works as an outlet row, typically
variables it is necessary to work with one fixed topology. Wehaving all nodes fixed at zero pressure. For a given time step
will address the topology question again in the discussionthe pressures in these two rows are fixed constraints. The
The current restriction to 2D is also very convenient becaus@ressures in all the other nodes are free variables that are
three dimensional systems are CPU time demanding. solved for. . _ _

We consider two fluids within this system of tubes. They —Once the pressure field is known, Eg) gives the flux in
are separated by a set of interface®niscj in the tubes. We each tube. In turn this qurmatlon is u;ed to forwa_qu inte-
do not allow for film flow. Motion of the fluid during a 9rate the system by one time step, using the explicit Euler
simulation is represented by the motion of the menisci. Inscheme. In practice, forward integration means motion of the
each tube we allow zero, one, or two menisci. If at anyMmenisci, and as long as the menisci move within a single
instant the evolution of the system generates a third meniscigbe, this is straightforward. However, there will be menisci
in one tube, then the three menisci are collapsed into onéaching the ends of the tubes. This is dealt with as follows
The position of this meniscus is the one that preserves th&®r every node separately. All the menisci that have pro-
volumes of the two fluids. This upper limit of two menisci in ceeded past the edges of the tubes neighboring a node, and
each tube sets the resolution of the fluid distribution. so have entered the node, represent incoming volume of one

With respect to permeability, the tubes are treated as Cyof the fluids. In order to have volume conserva_tlop, the same
lindrical, but with respect to capillary pressure they are hour@mount of volume must leave the node. This is done by
glass shaped. This means that over each of the menisci in tflding fresh menisci in the neighboring tubes in which the
system there is a capillary pressure, which varies with thdlow is away from the node. The positions of these fresh

menisci’s positions in the tubes. The formula for the capillaryMenisci are such that volume is preserved. This is the essen-
pressure is tial part of these rules of motion. However, the rules that are

actually used are a little more complicated, mainly due to
2y computational technicalities. They have been presented in
Pe=—[1—cog2mx)], (1) detail beforg13], and they are not necessary for the under-
r standing of the results in this paper.

Many authors have studied invasion under a constant ap-
which is a modified form of the Young-Laplacew [17,25. plied pressure. In the work by Aket al. constant flux inva-
Here, r is the radius of the tube angt is the interfacial sion has been considered. By solving the flow field for two
tension between the fluids. Furtherjs the position of the different globally applied pressures giving two different
meniscus in the tube, running from 0 to 1. fluxes, one can calculate the pressure that would give the

desired flux. We do not go into details here since this has
been described in detail befofrg7]. We will just remark for
Yyoung-Laplace law is sometimes referred to as Laplace’s equanow that all simulations presented in this paper are per-
tion [25]. formed with constant flux rate.
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Network models based on Washburn’s equation were in- 5.0
troduced by Payatakes and co-workers, see, [@.fgand ref- T 4.0
erences therein. Their work related to steady-state two-phase 5 3.0
flow is of particular interest8,24]. A detailed comparison of =

. S ‘ . w 20/

the two lines of modeling is not our aim, but we give some 4
general remarks. Our model is a litle more coarse in two 10 0 200 400
ways. First, the resolution of pore space and of the fluid in 1(s)
the pore space is lower since it is a tube model, and since () Global pressure
only two menisci are allowed in each tube. Second, film flow
is not included, neither explicit as network components or -
via the use of coefficients for, e.g., coalescence of oil blobs. "E
Also, we have chosen to work with fixed values for a larger 2
number of parameters. In other words, we present generic =
rather than specific use of the model in this work. Finally, we T ,
emphasize that our model uses biperiodic boundary condi- S 0 200 400
tions to reach steady-state flow. A short description follows. t(s)

(b} Nonwetting flux

Boundary conditions
y FIG. 1. The figures show the typical time evolution(a¥ global

Invasion simulations go on until the invading fluid pressure andb) flux of nonwetting fluid in a system of size 20
reaches the outlet. If they were to go on further, they change 40 nodes. The nonwetting saturation is approximately 35%, the
character since one fluid is percolating the system. We wishapillary number is Ca3.2x10 2, and the total flux through the
to address the question of what happens in a system far frosystem isQ,=14.0<10°® dm®/s. On the average the fluid travels
inlets and outlets, i.e., in a very large system, we select almost 17 times around the system during this simulation.
small portion somewhere from the middle and study its prop-
erties. keep the total flux constant, the globally applied pressure fall

This is done by making the inlet row and outlet row ad- must change in every time step. A sample of global pressure
jacent so that the fluid that flows out of the last row entersversus time is given in Fig.(&).
the first row. In practice this works in such a way that the We wish to draw attention to two aspects of the nature of
simulation can go on forever, regardless of whether one fluidhis curve. The first is that it appears noisy. On a short time
percolates the system or not. In a sense, having biperiodigcale, local redistributions of the fluids and changes in the
boundary conditions makes the system infinite. However, theapillary pressures lead to a change in the overall pressure,
system is closed, and there is a fixed volume of each of thevhich must be applied in order to produce a given flux. Also
fluids in the system. Thus each simulation takes place atne should remember that the time axis is very compressed.
constant saturation equal to one of the initial configurationsThe fluctuations in pressure are not achieved in one single
We return to this point when presenting results from simulatime step, but are rather of the order of one 100 time steps.
tions in Sec. lIl. The second aspect is that on a longer time scale the sys-

These boundary conditions can be visualized by considetems have a transient part and a steady part. The transient
ing the system to be the surface of a torus. The flow is driverpart depends on the initial conditions, while, in general, we
around the torus by a numerical trick. This method has beehave found that the steady part is independent of the initial
used in connection with random resistor netwoflZ2]. conditions. After the systems reach the steady state, the prop-
Briefly, one can say that there is an invisible line dividing theerties of this state are typically the time averages over the
system. Looking over this line, there is a pressure fall orfollowing variables: global pressure, the flux of each of the
jump, which is the driving force of the flow. All the tedious fluids, the number of interfaces, velocity distributions, and
details are given in the previous wofk3], none of which  others.
are necessary to know in order to understand the contents of Figure Xb) shows the nonwetting fluQ,,, as a function
the present work. of time. The data in Figs. (&) and X1b) are from the same

simulation. We see how the nonwetting flux also has a tran-
1. SIMULATIONS sient and a steady part. More convenient is the nonwetting

fractional flow, which is defined as the flux of the nonwetting

_The essence of the model porous network is that it igjyid through the system divided by the total flui,,
situated on the surface of a torus. In other words the applied g /Q,.,. To some extent the fractional flow property has

boundary conditions are biperiodic, which makes the systefBeen studied before. Previous results will be summarized
closed. By means of the pressure fall technique, the overaliyorjy,

flow is around the torus, while the total volumes of the two
fluids remain constant within the system.

Equally important is the fact that the simulations, that are
presented here are done by keeping the total flux around the There are many possible parameters of the model system.
torus constant. As time evolves, the fluid distribution We will generally use the saturation as the independent vari-
changes and local capillary pressures change. In order table in our plots. The nonwetting saturation is defined as the

A. Fractional flow and pressure curves

056310-3



HENNING ARENDT KNUDSEN AND ALEX HANSEN PHYSICAL REVIEW E65 056310

The interpretation of the size independence is that the

1.0 | e
| #{f/'/ system is large enough to be in the asymptotic limit. Of
£ 0.5 R | course, this might not be true for some possible parameter
= / | sets of the system, but for the sets used in the present work it
0.0 L ) is true. All simulations that are presented here are, therefore,
0.0 0.5 1.0 done with a system size of 2040 nodes.
S, The system size dependency of the global pressure is
(a) Nonwetting fractional flow slightly more complicated. The pressure is applied in such a
way that there is a pressure gradient along one of the system
40 es axes. Any change in size sideways, that is, perpendicular to
& L ;} h*%ﬁ# the gradient, does not alter the pressure curves. However,
° . **: increasing the length along the pressure gradient with a fac-
= 20 1 *y tor results in a global pressure that is increased by the same
<40 * factor. This is just another way of saying that it is the gradi-
0.0 0.5 1.0 ent in global pressure that must be applied to give a desired
S total flux that is independent of system size. In this work we
(b) Total pressure consider only one system size, so we prefer toAiBeor the
_ global pressure drop.
FIG. 2. The plots show average values(@ffractional nonwet- The points in the plots come from five different geom-

ting flow and(b) global pressure, where the averages are taken inyyias They are drawn from the same distributions with dif-

. . e
the steady part. The capillary number is=€a2x107". We see oot random seeds. The specific permeability of the porous

clearly how these values depend on the nonwetting saturation. T%edium denoted bl, is related to the applied pressure and

simulations are run on five different geometries generated by dlf;[he total flux for a single phase by Darcy’s law
ferent random seeds.

k AP
w L

volume of nonwetting fluid divided by the total volume, 9
Siw=Viw/Viet- The other possible parameters are the vis- 3
cosities of the fluids, the total flux, the interfacial tension,

and the system size. .
In this work we have restricted ourselves to the casé’v.hereL is the length of the system along the pressure gra-

where the two fluids have equal viscosities. The viscosityd'ernt %?Id ithe SUb?ﬁ”tpr} 0? PrS derrzote; ds\l/\r/‘iﬁlethphra?er prss;
and some other parameters are combined in the capilla dre. This 1S a geometrical property a Vill, therelore, vary
lightly for the five geometries. In fact this means that the

4

number pressure curves in Fig(l2 should be five slightly different
1Qu0t curves. The variations in the specific permeability are of the
a= ; order of a couple of percents. The five curves are scale
C " (3 d f le of The fi led

according to this difference. The average position of the

curves is kept constant under the scaling. We note that this
whereu is the viscosityQy is the total flux,y is the inter-  implies that the single-phase points, 0% and 100% satura-
facial tension, and is the cross-sectional area of the sys-tion, are shown as single points. The rest of the curves are
tem. Physically this number is the ratio between typical vis-not perfectly overlapping due to statistical variations.
cous forces and capillary forces within the system. We have Subsequently we will take this scaling one step further.
used a fixed value for the interfacial tensiory  For illustrative purposes the physical dimension of pressure
=30.0 mN/m. The cross-sectional area is approximately was used in Fig. ®). However, it will be more convenient to
=0.145 cnf for the system size used. We have further cho-work with a normalized pressure. This is done by giving the
sen the value of the viscosity to be=0.1 Pas. Actually the pressure in units of the single-phase pressure, i.e., letting the
total flux is the only parameter that we vary. This is no limi- axis be AP/APg. This is straighforward, but note that the
tation as we will discuss shortly. single-phase pressure is a function of the capillary number. It

For the capillary number Ga3.2x 10 3 the nonwetting  follows from Egs.(3) and(4) that APyxCa.

fractional flow as a function of nonwetting saturation is The fact that the capillary number, as it is defined in Eq.
given in Fig. Za). The corresponding global pressure is(3), serves as the relevant combined parameter was also es-
shown in Fig. 2b). Here it should be noted again that the tablished in the previous wofli3]. This means that one can
values of the fractional flow and global pressure are the timenake changes to all the variables in E8), but as long as

averages in the steady state. the capillary number is preserved the shape of the fractional
The very important question of how these results dependlow curve will be the same.
on the system size was examined eafflied]. When all other The characteristics of the fractional flow curve are as fol-

parameters were held constant, except for system size amows. Below a certain nonwetting saturation, approximately
saturation, the fractional flow as a function of saturation wa% for Ca=3.2x 10" 3, we observe that the nonwetting frac-
shown to be independent of the system size. The examineibnal flow is essentially zero, meaning that only the wetting
system sizes were 2040, 20<80, and 4 80 nodes. phase flows. Conversely, above a certain nonwetting satura-
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tion, 85% for Ca=3.2x10 3, only the nonwetting phase
flows. Between these values both phases flow.

Imagine that there were no capillary forces between the
two phases. Then both phases would have flown equally eas-
ily through the porous network. The nonwetting fractional
flow would then be exactly equal to the nonwetting satura- 0.0,
tion. This is illustrated by the diagonal line in Figi@2 The s
effect of having interfaces with capillary pressures can be
thought of as a change from the ideal diagonal to the ob-

(a) Ca =32 x 10"

2

0.5
S,

nw

1.0

(b) Ca=1.0x 1072

tained curve. For low nonwetting saturations the fractional 1.0 10

nonwetting flow is lower than the saturation, i.e., under the R
diagonal. For high nonwetting saturation the nonwetting . .
fractional flow is higher than the saturation, i.e., above the o205 205 I/

diagonal. Roughly we can say that the phase having the ¢

larger volume fraction gains, and hence it flows faster than 0.0 o_oo o“t Y -

what one might naively expect. At some point the curve
cross the diagonal, and this is the point where neither phase ™
gains, compared to its volume fraction. This point is not at
50% saturation, and it is clear that there is an asymmetry
between the wetting and nonwetting phases.

(C) Ca=32x10"

3

(d) Ca=1.0x 1073

The pressure curve in Fig.(® has two points plotted W= - 10 Lo
with X, at 0% and 100% saturation. These are single-phase S A
pressures, and since the two fluids have the same viscosity, :gs * 205 p;
the pressures are equal. For all other saturations, two phases = L4 b ++
are present within the system. There are interfaces between } # .
the phases with capillary pressures. Motion of two fluids 005" - 0 To %ot 0s 10

with interfaces through tubes requires more global pressure s

S

nw

than for the case of a single fluid. One might imagine that in )
some cases, some or all of the present interfaces do not (e) Ca=32x10

MOVe, WhiCh is typically the situation When only one fluid FIG. 3. The figures show the nonwetting fractional flow as a
fIQWT. ﬁt”.ldthbe global tf.;)]ressure ml.JSt b.et hlfgher tfl;?n |I0r aLunction of nonwetting saturation for six different capillary num-

Slgg N ucli ecaus.ﬁl N Eonmovmgd IP? er acesa Och OUbers. For high capillary numbers the curve is close to the diagonal,
tubes, reduce possible pathways, and hence reduce the SRile for low capillary numbers the curve is S shaped. The range of

c_iﬁc permeability of the me_diur_n. As_we can s_ee from thesaturations for which both phases are mobilized decreases with de-
figure, the global pressure is higher in the entire two-phasgeasing capillary number.

region than in the single-phase points.

The general nature of the pressure curve is that with in- )
creasing saturation, the pressure increases monotonically toP40ximately 5% up to 95% in steps of 5%. Further, we have
maximum value. Thereafter it decreases monotonically. Théised five random seeds that provide five different geom-
curve in Fig. 2b) is generally smooth except at nonwetting etries.
saturation of approximately 85% where the pressure drops The shape of the fractional flow curve depends strongly
rather rapidly. We observe for now that this point is coincid-on the capillary number. For high capillary numbers the
ing with the point were the nonwetting fractional flow be- curve is approaching a straight line. For intermediate capil-
comes unity. Also the character of the curve changes at thigry numbers, as for the sample that was discussed in the
point. To the left it is curved while to the right it is nearly a preceding section, the curve has a clear S shape. For lower
straight line. capillary numbers the curve seems to approach a step func-
tion.

The curves can be divided into three regions. The first
being for low nonwetting saturation, where the nonwetting

Now we have learned that the capillary number serves afactional flow is zero. For the two highest capillary numbers
the relevant parameter for the fractional flow versus saturathis region is almost vanishing. As the capillary number is
tion curves. For two fluids having equal viscosity we havelowered, this region grows in size. The third region is for
performed simulations for six different capillary numbers, high nonwetting saturations, where the nonwetting fractional
which is shown in Figs. 3 and 4. The system size is 20flow becomes unity. The same general behavior is valid here
X 40 in all simulations. This size is sufficiently large to be in as for the first region. It becomes wider with decreasing cap-
the asymptotic limit, but still so small that simulations can beillary number. The difference is that for a fixed capillary
done within reasonable amounts of time. For each capillarjpumber the region with unity nonwetting fractional flow is
number we have chosen 19 different saturations from aplarger than the region with zero nonwetting fractional flow.

(f) Ca=1.0x 107"

B. The dependency on Ca
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1.2 1.8 TABLE I. The crossover points of the fractional flow curves
’*’tﬁz C&ﬁs ‘1% (crossover, the maximum points of the pressure cur¢yggximum
o & %3& 0” + 5 AP), and the turning point&urn) of the fractional flow curves for
§ 110 ”% g 147 % six different capillary numbers. The points are all saturation values,
< “9% e o %g which are dimensionless numbers in the range from 0 to 1. The
10 ;t . three points seem to coincide for the four lowest capillary numbers.
0.0 05 1.0 0.0 05 1.0 The crossover point differs from the other two for the two highest
S S capillary numbers.
(2) Ca=32x10"2  (b) Ca=10x10"" Ca Crossover  Maximum P Turn
55 p@e&ﬁ% 7.0 R 3.2x10°2 0.132) 0.194) 0.224)
o 3 * 50| & %"% 1.0x10 2 0.182) 0.225) 0.236)
2 o ? *é g ) Oof’* . =d 3.2x1073 0.252) 0.285) 0.257)
< i *{” <30t ¢+ * 1.0x10°3 0.332) 0.31(4) 0.344)
15 Y ki " 3.2x10°* 0.402) 0.385) 0.31(8)
0.0 05 1.0 0.0 05 10 1.0x10°* 0.483) 0.456)

N

nw

(c) Ca=32x10"3

S,

nw

(d) Ca = 1.0 x 1072

the two phases. Actually the crossover point is a function of
the capillary number. For very high Ca the crossover point is

Q ERaTe)

150 ;%3‘&& 300 ++¢¢3§+ close to zero. It approaches 50% when the capillary number
3y 100 j 5 & 200 po  orf, w0 o decreas_es. 'I_'his situa_tion C(_)rresponds tq the problem of _bond
3 5o [0 °g, 09 & 1 s Ht;_ﬁ percolatlor_1 in two dimensions, for which the_ percolation

#t *aky, s ;fﬁ* hy threshold is known to be.= 1/2 [27]. In percolation theory
0o o5 1o 00, 05 :0 Scis a critipal pond probability and it corresponds toa criti-
s ' 5 ' cal saturation in our problem. For small systems, history may

nw

evolve in such a way that the systems have a saturation other
than 50% even though only one phase flows. However, on

FIG. 4. The figures show the global pressute,as a function :Eg ﬁ\r;eitriige\’/s?lijg] i2n5l(;]:/lmt\(/av§yhsg\a,? I\il;?el((:jhtlhses\?;fgsggtqug’
of nonwetting saturation for six different capillary numbers. The 9 0

global pressures are normalized with respect to the singIe-phas‘:érossover po'g_t in Tat;lle ][ . Ll A
pressureAPg as defined in Eq(4). Recall that for each capillary Corresponding to the fractional flow curves in Fig. 3 are

number the total flux is fixed to a constant value. The curves corth® global pressure curves in Fig. 4. Also here the curves
respond to the fractional flow curves in Fig. 3, and the derivates ofiéPend strongly on the capillary number. It was pointed out

, . : - - -3
the fractional flow curves are included here in a scaled version, in the preceding section for G&8.2<10"*° that the curve
This scaling and the relationship between the curves are treated iRcreases monotonically to a maximum value and thereafter

Sec. lll C. decreases monotonically. This is true for the entire range of

the capillary number that we have examined. The position of
This means that there is no perfect symmetry between théhe maximum value increases with decreasing capillary num-
two phases. ber. The values are listed in Table I.

The second region is the central part where both phases The pressure curves can be divided into three regions just
are mobilized. The width of this region decreases with dedike the fractional flow curves. At least for the three lowest
creasing capillary number. In the limit of infinite capillary capillary numbers, Figs.(d)—4(f), their boundaries are clear
number, negligible capillary forces, the curve will approachand distinguishable. The first region is the one were the pres-
the diagonal and thus span the whole saturation range. In tteure increases linearly with nonwetting saturation from the
opposite limit of small capillary number, it is reasonable tovalue at zero nonwetting saturation. For the three highest
expect that the curve will approach a step function, althougleapillary numbers, Figs.(d)—4(c), this region is almost van-
we have not explicitly checked this for capillary numbersishing.
lower than those presented here. Between these limits there The third region is where the curves decrease linearly
is a range of capillary numbers where the central parts of thaith increasing nonwetting saturation towards the value of
curves have an interesting structure. pressure at unity nonwetting saturation. This region can be

As it was pointed out in the preceding section for Caseen in the entire range of capillary numbers. By inspection,
=3.2x 103, the curves lie above the diagonal for large non-we see that the region boundaries are the same in the pres-
wetting saturations and below for small nonwetting saturasure curves as for the fractional flow curves. Thus the same
tions. The interpretation is that the system favors transport ofomments regarding the width of the regions are valid for the
the phase, the volume of which is more. This is not exactlypressure curves.
true, since the crossover from favoring one phase to the other The second region is the central part of the curve. It is
is not at 50% nonwetting saturation, but at a somewhaturved and has a nontrivial structure. For the lower capillary
smaller value. Again the system is not perfectly symmetric innumbers the pressure increases abruptly at the boundaries of

() Ca=32x10"* (f)Ca=1.0x10"%
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the region. In this region both phases are mobilized. The TABLE Il. The scaling factorsA andB from Eq. (5) are shown
immediate conclusion is that more pressure is needed whear the six capillary numbers. They are used in the scaling of the
both phases are mobilized, as interfaces then are mobilizegeérivative of the fractional flow curves, which is shown in Fig. 4.
The relation between the fractional flow and the global pres-

sure in this region will be the subject of the following sec- Ca A(Ca) B(Ca)
tion. 3.2x10°? 0.22 0.87

The first and the third regions share several properties. At 1.0x10°? 0.35 121
their outer boundaries, 0% and 100%, respectively, the val- 3.2x10°3 0.83 1.84
ues of the global pressure are equal, and equal to the single- 1.0x10°3 1.47 3.83
phase pressure. Also at the inner boundaries of these regions 3 .2x 104 3.22 6.90
the global pressures have the same value. That is to say, as 1 gx 104 5.89 17.6

far as both inner boundaries are distinguishable, we can
make this observation. Physically the inner boundaries are N - ] )
just at the saturation values where there is an onset of mobthe specific permeability of the other fluid. The result is that
lization of the other phase. The fact that the pressures are tiB€ pressure curve is steeper in the first region than in the
same here is the same as Saying that in this respect therettyrd, and thus the first region Is narrower than the third.
symmetry between the two phases.

Within these regions one of the phases is immobilized. C. Relationship betweenf,,, and AP

Still there is a linear dependency of the global pressure on s section is devoted to the study of the central range of
the saturation within the regions. The reason for this changgayration, where both phases are mobilized. In this region
in pressure cannot come from the increased pressure Nec&ga have defined the crossover point as the point where the
sary to move an increased number of interfaces, since the,ctional flow is equal to the saturation. On both sides of
interfaces generally are pinned to fixed positions when onlypis point the phase whose saturation is higher gains in the
one phase flows. When there is an increased volume of thg,\se that the fractional flow is higher than the saturation. In
phase that is immobilized, then there is less available volumg, g region the fractional flow curves are roughly S shaped.
for t'he other pha;t_a to move in. This is a geometrlcal COMn particular, for the capillary numbers in FiggcBand 3d),
straint. The specific permeability of the single phase thajhe cyrvature changes approximately at the crossover point.
flows will decrease within these two regions as the saturatiofynether this is coincidental or not will be discussed later.

of other phase increases. Thus more and more pressure\ig. have determined the derivative of all the six curves.

needed to maintain a constant total flux. From these data we have estimated the turning points of zero
This qualitative explanation does not account for the fact, ,rvature. which are listed in Table I.

that these parts of the curves are straight lines. If the immo- 1o gifferentiation has been done in a straightforward

bilized phases were pinned to positions in the network thaf oy except at the boundaries of the central region. Outside
were more or less random, then to a first approximation ghe region the derivative is zero and inside the region the
linear increase in the saturation of the immobile phase would ,es are smooth. However right at the boundary the frac-
Iead.to a linear decrease in the effective system size for thﬁonal flow curves have, for lower capillary numbers, a break

mobile phase. In turn, that would lead to a linear increase ifyhere the derivative almost diverges. We have ignored these
global pressure. breaking points.

The next question is, why is the third region wider than  \ve find that the derivative has the same shape as the

the first region. According to the first approximation reason-gishal pressure in the central region. This is shown in Fig. 4,

ing above, they should be equal. Going a little beyond thigyhere the derivative is marked I§y. By the same shape we
approximation, we know that a bubble of nonwetting fluid iS (\aan that for each capillary number we can find two dimen-
more likely to get pinned around a node. Its most stablg;iyniess constants andB for which

position is when it is bounded by menisci in all neighboring

tubes, and when they are in the half parts of the tubes, which dF,,, A

are closer to the node. Whatever direction the bubble is A(Ca)K+B(Ca)=ﬁ. )
pushed in it will have to pass the threshold in the respective W S

tube. Bubbles of wetting fluid have opposite preferenceThe quality of the overlap of the two sets of data is very
Their most stable position is within a tube. With two bound- good for the four highest capillary numbers, Fig&)4 4(d).

ing menisci placed on each side of the center of the tube, theor the fifth, Fig. 4e), the quality is fair. For the lowest
wetting bubble is stable to fluctuations in both directions. Ofcapillary number the points start to spread out so much that a
course, bubbles come in a range of sizes and this asymmetepmparison of shapes is difficult. We have included the de-
between the two phases is more pronounced for smallaivative here to get an estimate for the scaling coefficiénts
bubbles. On an average, we can say that the nonwettingnd B. The values of the scaling coefficients are listed in
phase when immobilized will block more nodes than tubesTable II.

The wetting phase when immobilized will occupy compara- In order to understand the meaning of E§), it is useful
tively more tubes than nodes. It is more effective to blockto rewrite the expression in the terminology of mobilities and
nodes than tubes, and this explains why the nonwettingelative permeabilitie$25,26]. The nonwetting relative per-
phase is more effective than the wetting phase in reducingneability k, , is defined by
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z 08 - ; , —% which can be solved fak P; in combination with Eq(4) this
206 |x + ko } ] is right-hand side of Eq(5). Likewise, the fractional flow
£ % * ki *:t can be expressed in terms of the mobilities,
% 04 r *X( **,* 7
£ 02| ‘*xwﬁ’*‘* ] M nw
700 02 04 06 08 10
N

nw

Thus the scaling relation in E@5) can be rewritten as
FIG. 5. The nonwetting and wetting relative permeabilities are

shown as a function of nonwetting saturation. They are defined in d [M(Sw)

Egs.(8) and(9). The capillary number is Ga3.2x 10" 3, and these E(W) +B= M (S’

curves correspond directly to the fractional flow and pressure W W K W

curves that are found in Fig. 2.

(14)

whereA andB are independent of the saturation. Differenti-

QS Kl Sk AP(Sp) © ating once more, we find
3 Mnw L , 2
_ A d° (Mpw(Sw)| 1 dM(Syw) 15
where the fraction d,\ M(Sw) - pM2 dSy
Kr ol Shw)
Ml Sow) =——— n,unw = () The insight given by this equation is as follows. Generally

the nonwetting and wetting mobilities are considered as two
is the nonwetting mobility. Here the constaais the specific ~ independent functions of saturation. The result in Ed)
permeability as was defined in E¢). Substituting fork, shows that the two mobilities are related through an equa-
keeping in mind that both phases have the same viscasity tion.

and expressin®,,, in terms ofF,,, we obtain The dependence that we have found so far is restricted to
the case where both phases have equal viscosities. Whether
AP the result will be extendable to the case of two different

kr, ol Snw) = F o Sw)

AP(Sy) (8) viscosities in some form is an interesting question, but is
beyond the scope of the present work. The validity is also
Likewise, the result for the wetting relative permeability is restricted to capillary numbers in the range 810 *<Ca
<3.2x10 2. For higher capillary numbers there is little rea-
K, o( Sr) = F o Su) AP 9) son to expect any interesting behavjor since t.he as_ymptotic
’ AP(Syw)’ behavior of the fractional flow curve is the straight diagonal.

_ i Lower capillary numbers than this range are more interesting
where the single-phase pressure dioBs is the same be- 150 from a practical point of view, since they may occur in
cause we consider two fluids with equal viscosities. Thg relareservoir conditions. Challenges in this region of parameter
tive permeabilities for the capillary number €8.2x10 space are the increased history dependence of the results and
are shown in Fig. 5. These curves are comparable to expefipe considerably increased CPU time.

mentally obtained relative permeability curves, which are The validity of Eq.(5) comes from visual inspection of

frequently used in the petroleum indus{g5]. . the data collapse in Fig. 4. Visually it seems that for each

Analogously to nonwetting mobility in Ed7), we define  capjllary number, the two curves have their maximum value
wetting mobility as at the same saturation. We wish to discuss whether these

K, o Sou) maximum points are coincidental with the crossover points

My Spp) =~ (100  on the fractional flow curves. Estimates for all three points

w for each capillary number are listed in Table I. The error

estimates come from the data analysis, and for the turning

point, precision is lost in the differentiation process. The
M (Sru) =M i So) + M Sru) - (11)  crossover points are sensitive to systematic errors, in particu-

lar, for high capillary numbers. The reason is that the frac-

In the simulations, the total flux has been held constant. Itional flow curve becomes increasingly parallel to the diag-

can be expressed by using ), and its wetting counter- onal for increasing capillary numbers. A small vertical shift

part, as of the fractional flow curve will give a large shift in the

crossing point. From the values in the table we observe that

the three points coincide for the four lowest capillary num-

bers within the error bars given. That is, the turning point for
the two lowest capillary numbers are very uncertain and not
_ QM(Sn VAP(S,) (12) listed, respectively. For the two highest capillary numbers the
L W W crossover point is not equal to the maximum pressure within

and the total mobility as

AP
Qior= Qnwt Qu= 2 (M T My) kT
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FIG. 7. The scaling factoA from Eq. (5). Data are taken from
FIG. 6. The crossover points from Table | are shown as a Table II.

function of the logarithm of the capillary number. The straight line

fit is made on the basis of the four lowest capillary numbers, whichy s the one that must be multiplied to the derivative of the
are closest to the critical capillary number. fractional flow curve in order to obtain the pressure jump

the error bars, but again one may speculate the possibility d‘]rom the onset level to the actual pressure at a given satu-

systematic errors in these two points. fation in the central region.

In conclusion, we cannot say whether the crossover poin(t:a Iti|IlerIer?L:rtnht?etrth'?hrjerreei(s)l;;ei'lsi:nnIz;lr]tﬁrri\?stlr?g[ faunrzjcgogrgf the
is related with the maximum point. However, it is an inter- pirary )

. . . . functions of the capillary number. The functional forms are
esting question because it suggests to look for effective the'resented in Figs. 7 and 8. We can sav that the explanation of
oretical descriptions, starting at a point having this supposp gs-. ’ Y b

edly nice behavior. Experimental work on this problem will these two power laws is related to the width of the central

povce means of checking boh £69) and he pessie. 16901159 1€ SETLIo ik eraces e ot n motn
relation between the crossover and the maximum pressun% y ‘ q P priary
point number. We have so far not been able to construct sound

It is interesting to look at how the crossover point andexplanatmns for these power laws, and present them as ob-

scaling factors vary with the capillary number. We arguedservatlons only.

that the crossover point should approach the percolation

thresholds; in the limit of small capillary numbers. This IV. DISCUSSION
limit turns out to be not zero, but a lower critical capillary
number Cg;;. We denote the crossover point by the cross-

ver ratiors. The cr ver poin function of th ) .
over saturatiors. The crossover point as a function of the pore level. The model is coarse grained on the level of the

logarithm of the capillary number is shown in Fig. 6. That is, !
the capillary number is normalized with respect to the critical!nternal structure of the pores. The current use of the model

capillary number, which is determined from fitting the fol- ![isor?sensgg%u?l:\;?;cglcrgsgrtlisespngSI(t))lriuV:tr?]efgi\g ég?]dgéci'b_
lowing relation to the data points: ) ge prop P

tained, which may be used as parameters on larger reservoir
Ca scale simulations.
Con) (16 In this paper we present results for two-dimensional
it square networks of tubes. This topology is chosen for con-
Heres, is known so that the value af=0.066 is the slope of Venience. Itis possible to extend the work to 3D and choose
a straight line fit, and the value of Ga=7.3x10 ® is the  Poth regular and irregular connectivities. The choice of a
one that makes the line meet thexis ats,=0.5. particular topology is one aspect of making the model spe-
The physical idea behind having a critical capillary num-cific t0 a given porous medium. Further, average tube radius
ber is that at some point, the viscous forces of the flowing@Nd the width of the tube radius distribution are important
fluids and the pressure gradient will become so small that

The problem of two-phase flow in porous media is com-
plex. We attack the problem with a network simulator on

s=s.—aln

they cannot mobilize any more interfaces. In that situation 100 ' '
one of the phases will have a continuous pathway to flow in.
The other phase is pinned to its current locations. Therefore o 10 e :
any further decrease in the capillary number below the criti- 3 "‘ ‘x
cal value, will not add anything to the picture; one phase S T
flows. S T
The scaling coefficientd andB from Eq.(5) are listed in T
Table Il. The dimensions of these coefficients are the same as 0 s
for pressure. The immediate tentative interpretation of the 0 0 Ca 0 0

meaning ofA and B are as follows. The consta® is the
threshold pressure that is applied right at the borders of the FIG. 8. The scaling factoB from Eq. (5). Data are taken from
central region of the fractional flow curves, the pressureTable II. The value 0B, is the one that gives the best power law fit;
where there is an onset of mobility of both phases. The factoB.=0.65.
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parameters that should be adjusted for the same purposes together these two properties, which generally are be-
Here, we have used a distribution that corresponds to experieved to be independent. We have shown how this statement
mental sizes in Hele-Shaw cells with glass beads, which havean be transformed into the language of relative permeabili-
been used experimental[28]. Further work and compari- ties and mobilities, which as a consequence are not indepen-
sons with these experiments may provide insight into howdent but must obey Ed15).
the model can be callibrated in order to become quantita- An important note here is that this result so far has only
tively precise. been established by numerical work. It will be very interest-
The most important characteristic of the simulations ining to get an experimental verification of this result. Hope-
this paper, which sets them apart from other simulations, igully, after an experimental verification, this equation can be
the biperiodic boundary conditions. This makes the systenof assistance in the measurement of two-phase flow proper-
closed, with a fixed saturation of each of the two phases. Faies. In the experimental situation it is difficult to measure all
six different capillary numbers we run the systems until theyvariables precisely. The saturation can, e.g., be reconstructed
reach a steady state, where the flow is characterized by confrom the pressure and fractional flow relationship and
plex bubble dynamics. The notion of imbibition and drainageEg. (5).
are not adequate to describe this situation, which would also
be the situation deep |ns_|de the reservoirs. We find average ACKNOWLEDGMENTS
flow properties as a function of the saturation. These proper-
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