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Relation between pressure and fractional flow in two-phase flow in porous media

Henning Arendt Knudsen* and Alex Hansen†

Department of Physics, Norwegian University of Science and Technology, NTNU, NO-7491 Trondheim, Norway
~Received 20 February 2001; published 16 May 2002!

We study average flow properties in porous media using a two-dimensional network simulator. It models the
dynamics of two-phase immiscible bulk flow where film flow can be neglected. The boundary conditions are
biperiodic, which provide a means of studying steady-state flow where complex bubble dynamics dominate the
flow picture. We find fractional flow curves and corresponding pressure curves for different capillary numbers.
In particular, we study the case of the two phases having equal viscosity. In this case we find that the derivative
of the fractional flow with respect to saturation is related to the global pressure drop. This result can also be
expressed in terms of relative permeabilities or mobilities, resulting in an equation tying together the mobilities
of the two phases.
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I. INTRODUCTION

Two-phase displacements in porous media have du
the past decades been studied by experimental work@1–3#,
numerical simulations@3–8#, statistical models@9–11#, and
differential equations@12#. The work in this field has been
motivated by applications in oil recovery, and also hydr
ogy. The complex nature of transport processes in por
media makes it worthwhile to approach the problem in ma
ways.

In this paper we present simulation results based o
network simulator of a porous medium@13#. The model is on
the pore level scale in the sense that each pore is repres
in the network. The generic building blocks are tubes, wh
constitute all interpore connections and which hold the po
space volume. As will become clear in Sec. II, each tu
allows for a maximum of two fluid-fluid interfaces. This ca
tures essential properties of porous media throats. Thes
pects set the level of coarse graining of the system. There
been numerous work done on lower length scales and
soscale methods, such as lattice gas methods@6,14#. An over-
view over some different scale models can be found in@15#.
On the other hand, compared to large scale reservoir sim
tions @16#, our work is detailed and it may provide avera
properties that can be used as input parameters in wor
larger scales. Currently, results are mainly generic, and m
detailed work is required to produce results that are valid
specific porous media. In particular, simulations in three
mensions~3D! are required.

In general, the model can be used for three-dimensio
porous media and irregular node positions. This follows fr
the fact that each interpore throat of the real porous med
is replaced by a tube in our model. However, in this paper
restrict ourselves to the study of flow in 2D using a regu
network with random properties. Previous use of the mo
in 2D has been in the simulation of drainage@17,18#. The
previous simulations have successfully reproduced the t
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poral evolution of the three regimes in drainage: viscous
gering, capillary fingering, and stable displacement. The m
jor important innovation in the present work is the change
boundary conditions. Earlier there was an inlet and an ou
between which an invasion process was simulated. Now
periodic boundary conditions are used, which make the s
tem closed, and the system is run for a longer time. T
gives average statistical flow properties in a different w
and it is the biperiodic boundary conditions that are the m
jor difference compared to other somewhat similar netw
models@7,8#, see Sec. II.

The nature of the simulations is such that the syste
approach a steady state, in which the two phases flow
bubble mixture. The notions of drainage and imbibition a
not adequate to describe the flow. On pore level there
continuous process of breaking up and merging toge
bubbles. Experimental work showing similar comple
bubble dynamics have been done in two-dimensional etc
glass networks@19–21#.

The basic results that are presented are fractional fl
curves of the nonwetting phase as a function of nonwett
saturation. Also we present the corresponding global p
sure drops that are applied. This is done for six differe
capillary numbers. The fractional flow and pressure drop
be transformed into the terminology of relative permeab
ties and mobilities.

Our simulations show that for the case where the t
phases have equal viscosity, there is a relation between
tional flow and pressure. This relation can be expresse
the form of a first order differential equation; the derivati
of the fractional flow with respect to saturation is connec
to the global pressure drop, also as a function of saturat

The paper is organized as follows. Section II provides
brief description of the model. Section III concerns simu
tion results, starting out with describing the nature of t
simulations. Thereafter, Sec. III A deals with fractional flo
and pressure curves, in general, Sec. III B discusses
these curves depend on the capillary number, and Sec.
establishes the relationship between the derivative of
fractional flow and the global pressure drop. Finally, in S
IV we make concluding remarks.
©2002 The American Physical Society10-1
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II. MODEL

The basis for the present work is a network model t
represents the two-dimensional porous medium. The netw
model is based upon that presented by Akeret al. @17,18#.
The geometric representation of the porous medium and
possible spatial fluid distribution is essentially unchang
Some changes have been made though. These concer
boundary conditions and detailed rules for the motion of
terfaces. All the details concerning these points have b
presented in a previous study@13#. Therefore we will restrict
ourselves here to an essential re´suméof the physically im-
portant aspects and omit the computational details.

The porous medium is represented by a square lattic
cylindrical tubes, tilted 45° with respect to the overall flo
direction. These tubes contain the volume of both throats
pores. The points where four tubes meet are referred t
nodes. Randomness is incorporated in the system by al
ing the position of each node to be randomly chosen wit
the interval630% of the lattice constant away from its r
spective lattice point. From these positions the distancedi j
between connected nodesi and j is calculated for alli and j.
Further, the average radius of each tube is chosen rando
from the interval (0.1d,0.1d10.3di j ), whered is the average
distance between the nodes, i.e., the lattice constant. Cle
other topologies in 2D~or in 3D! can be chosen. However, a
a first approach to the study of the relationship between o
variables it is necessary to work with one fixed topology. W
will address the topology question again in the discuss
The current restriction to 2D is also very convenient beca
three dimensional systems are CPU time demanding.

We consider two fluids within this system of tubes. Th
are separated by a set of interfaces,menisci, in the tubes. We
do not allow for film flow. Motion of the fluid during a
simulation is represented by the motion of the menisci.
each tube we allow zero, one, or two menisci. If at a
instant the evolution of the system generates a third meni
in one tube, then the three menisci are collapsed into o
The position of this meniscus is the one that preserves
volumes of the two fluids. This upper limit of two menisci
each tube sets the resolution of the fluid distribution.

With respect to permeability, the tubes are treated as
lindrical, but with respect to capillary pressure they are ho
glass shaped. This means that over each of the menisci in
system there is a capillary pressure, which varies with
menisci’s positions in the tubes. The formula for the capilla
pressure is

pc5
2g

r
@12cos~2px!#, ~1!

which is a modified form of the Young-Laplace1 law @17,25#.
Here, r is the radius of the tube andg is the interfacial
tension between the fluids. Further,x is the position of the
meniscus in the tube, running from 0 to 1.

1Young-Laplace law is sometimes referred to as Laplace’s eq
tion @25#.
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The volumetric flux through one single tube is given
the Washburn equation for capillary flow@23#,

q52
k

meff

pr 2

d
~Dp2pc!, ~2!

wherepc is given by Eq.~1!. Considering the tubes as cylin
drical with radiusr, the fractionpr 2/d is the cross-sectiona
area divided by the length of the tube. The permeability
the tube isk5r 2/8, which is known from Hagen-Poiseull
flow. When two fluids are present in a tube, an effect
viscosity meff is used. The viscosities of the two fluids a
weighted according to their volume fraction within the tu
at the beginning of the time step to givemeff . Dp is the
pressure difference between the ends of the tube.

In a network of tubes, the net flux passing through t
nodes must be zero. There is a pressure assigned to
node. Using the Washburn equation~2! for the flow in a
single tube, the flux conservation gives a large system
linear equations in the pressure variables. The equat
must be solved using the desired boundary conditions, wh
we will describe shortly.

The traditional use of network simulators has been
study of invasion processes. Usually the first row of node
an inlet row where all the nodes have the same fixed p
sure. Similarly the last row works as an outlet row, typica
having all nodes fixed at zero pressure. For a given time s
the pressures in these two rows are fixed constraints.
pressures in all the other nodes are free variables that
solved for.

Once the pressure field is known, Eq.~2! gives the flux in
each tube. In turn this information is used to forward in
grate the system by one time step, using the explicit Eu
scheme. In practice, forward integration means motion of
menisci, and as long as the menisci move within a sin
tube, this is straightforward. However, there will be menis
reaching the ends of the tubes. This is dealt with as follo
for every node separately. All the menisci that have p
ceeded past the edges of the tubes neighboring a node
so have entered the node, represent incoming volume of
of the fluids. In order to have volume conservation, the sa
amount of volume must leave the node. This is done
adding fresh menisci in the neighboring tubes in which
flow is away from the node. The positions of these fre
menisci are such that volume is preserved. This is the es
tial part of these rules of motion. However, the rules that
actually used are a little more complicated, mainly due
computational technicalities. They have been presente
detail before@13#, and they are not necessary for the und
standing of the results in this paper.

Many authors have studied invasion under a constant
plied pressure. In the work by Akeret al. constant flux inva-
sion has been considered. By solving the flow field for tw
different globally applied pressures giving two differe
fluxes, one can calculate the pressure that would give
desired flux. We do not go into details here since this h
been described in detail before@17#. We will just remark for
now that all simulations presented in this paper are p
formed with constant flux rate.

a-
0-2



in

a
f

e
w
i

in
ow
o
b
e
e
we
nd
s

id
ng
is

fro
ct
op

d-
er
he
u
od
th
th

n
la

de
ve
ee

he
o
s

ts

t i
lie
te
ra
o

r
t

on
r

fall
ure

of
me
the
ure,
so
sed.
gle
ps.
sys-
sient
we
itial
rop-
the
he
nd

an-
ting
g

as
zed

tem.
ari-
the

0
the

ls

RELATION BETWEEN PRESSURE AND FRACTIONAL . . . PHYSICAL REVIEW E 65 056310
Network models based on Washburn’s equation were
troduced by Payatakes and co-workers, see, e.g.,@7# and ref-
erences therein. Their work related to steady-state two-ph
flow is of particular interest@8,24#. A detailed comparison o
the two lines of modeling is not our aim, but we give som
general remarks. Our model is a little more coarse in t
ways. First, the resolution of pore space and of the fluid
the pore space is lower since it is a tube model, and s
only two menisci are allowed in each tube. Second, film fl
is not included, neither explicit as network components
via the use of coefficients for, e.g., coalescence of oil blo
Also, we have chosen to work with fixed values for a larg
number of parameters. In other words, we present gen
rather than specific use of the model in this work. Finally,
emphasize that our model uses biperiodic boundary co
tions to reach steady-state flow. A short description follow

Boundary conditions

Invasion simulations go on until the invading flu
reaches the outlet. If they were to go on further, they cha
character since one fluid is percolating the system. We w
to address the question of what happens in a system far
inlets and outlets, i.e., in a very large system, we sele
small portion somewhere from the middle and study its pr
erties.

This is done by making the inlet row and outlet row a
jacent so that the fluid that flows out of the last row ent
the first row. In practice this works in such a way that t
simulation can go on forever, regardless of whether one fl
percolates the system or not. In a sense, having biperi
boundary conditions makes the system infinite. However,
system is closed, and there is a fixed volume of each of
fluids in the system. Thus each simulation takes place
constant saturation equal to one of the initial configuratio
We return to this point when presenting results from simu
tions in Sec. III.

These boundary conditions can be visualized by consi
ing the system to be the surface of a torus. The flow is dri
around the torus by a numerical trick. This method has b
used in connection with random resistor networks@22#.
Briefly, one can say that there is an invisible line dividing t
system. Looking over this line, there is a pressure fall
jump, which is the driving force of the flow. All the tediou
details are given in the previous work@13#, none of which
are necessary to know in order to understand the conten
the present work.

III. SIMULATIONS

The essence of the model porous network is that i
situated on the surface of a torus. In other words the app
boundary conditions are biperiodic, which makes the sys
closed. By means of the pressure fall technique, the ove
flow is around the torus, while the total volumes of the tw
fluids remain constant within the system.

Equally important is the fact that the simulations, that a
presented here are done by keeping the total flux around
torus constant. As time evolves, the fluid distributi
changes and local capillary pressures change. In orde
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keep the total flux constant, the globally applied pressure
must change in every time step. A sample of global press
versus time is given in Fig. 1~a!.

We wish to draw attention to two aspects of the nature
this curve. The first is that it appears noisy. On a short ti
scale, local redistributions of the fluids and changes in
capillary pressures lead to a change in the overall press
which must be applied in order to produce a given flux. Al
one should remember that the time axis is very compres
The fluctuations in pressure are not achieved in one sin
time step, but are rather of the order of one 100 time ste

The second aspect is that on a longer time scale the
tems have a transient part and a steady part. The tran
part depends on the initial conditions, while, in general,
have found that the steady part is independent of the in
conditions. After the systems reach the steady state, the p
erties of this state are typically the time averages over
following variables: global pressure, the flux of each of t
fluids, the number of interfaces, velocity distributions, a
others.

Figure 1~b! shows the nonwetting fluxQnw as a function
of time. The data in Figs. 1~a! and 1~b! are from the same
simulation. We see how the nonwetting flux also has a tr
sient and a steady part. More convenient is the nonwet
fractional flow, which is defined as the flux of the nonwettin
fluid through the system divided by the total flux:Fnw
5Qnw /Qtot . To some extent the fractional flow property h
been studied before. Previous results will be summari
shortly.

A. Fractional flow and pressure curves

There are many possible parameters of the model sys
We will generally use the saturation as the independent v
able in our plots. The nonwetting saturation is defined as

FIG. 1. The figures show the typical time evolution of~a! global
pressure and~b! flux of nonwetting fluid in a system of size 2
340 nodes. The nonwetting saturation is approximately 35%,
capillary number is Ca53.231023, and the total flux through the
system isQtot514.031026 dm3/s. On the average the fluid trave
almost 17 times around the system during this simulation.
0-3
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HENNING ARENDT KNUDSEN AND ALEX HANSEN PHYSICAL REVIEW E65 056310
volume of nonwetting fluid divided by the total volume
Snw5Vnw /Vtot . The other possible parameters are the v
cosities of the fluids, the total flux, the interfacial tensio
and the system size.

In this work we have restricted ourselves to the ca
where the two fluids have equal viscosities. The viscos
and some other parameters are combined in the capi
number

Ca5
mQtot

gS
, ~3!

wherem is the viscosity,Qtot is the total flux,g is the inter-
facial tension, andS is the cross-sectional area of the sy
tem. Physically this number is the ratio between typical v
cous forces and capillary forces within the system. We h
used a fixed value for the interfacial tensiong
530.0 mN/m. The cross-sectional area is approximatelyS
50.145 cm2 for the system size used. We have further ch
sen the value of the viscosity to bem50.1 Pa s. Actually the
total flux is the only parameter that we vary. This is no lim
tation as we will discuss shortly.

For the capillary number Ca53.231023 the nonwetting
fractional flow as a function of nonwetting saturation
given in Fig. 2~a!. The corresponding global pressure
shown in Fig. 2~b!. Here it should be noted again that th
values of the fractional flow and global pressure are the t
averages in the steady state.

The very important question of how these results dep
on the system size was examined earlier@13#. When all other
parameters were held constant, except for system size
saturation, the fractional flow as a function of saturation w
shown to be independent of the system size. The exam
system sizes were 20340, 20380, and 40380 nodes.

FIG. 2. The plots show average values of~a! fractional nonwet-
ting flow and~b! global pressure, where the averages are take
the steady part. The capillary number is Ca53.231023. We see
clearly how these values depend on the nonwetting saturation.
simulations are run on five different geometries generated by
ferent random seeds.
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The interpretation of the size independence is that
system is large enough to be in the asymptotic limit.
course, this might not be true for some possible param
sets of the system, but for the sets used in the present wo
is true. All simulations that are presented here are, theref
done with a system size of 20340 nodes.

The system size dependency of the global pressur
slightly more complicated. The pressure is applied in suc
way that there is a pressure gradient along one of the sys
axes. Any change in size sideways, that is, perpendicula
the gradient, does not alter the pressure curves. Howe
increasing the length along the pressure gradient with a
tor results in a global pressure that is increased by the s
factor. This is just another way of saying that it is the gra
ent in global pressure that must be applied to give a des
total flux that is independent of system size. In this work
consider only one system size, so we prefer to useDP for the
global pressure drop.

The points in the plots come from five different geom
etries. They are drawn from the same distributions with d
ferent random seeds. The specific permeability of the por
medium, denoted byk, is related to the applied pressure a
the total flux for a single phase by Darcy’s law

Q

S
5

k

m

DPs

L
, ~4!

whereL is the length of the system along the pressure g
dient and the subscript onDPs denotes single-phase pre
sure. This is a geometrical property and will, therefore, va
slightly for the five geometries. In fact this means that t
pressure curves in Fig. 2~b! should be five slightly different
curves. The variations in the specific permeability are of
order of a couple of percents. The five curves are sca
according to this difference. The average position of
curves is kept constant under the scaling. We note that
implies that the single-phase points, 0% and 100% sat
tion, are shown as single points. The rest of the curves
not perfectly overlapping due to statistical variations.

Subsequently we will take this scaling one step furth
For illustrative purposes the physical dimension of press
was used in Fig. 2~b!. However, it will be more convenient to
work with a normalized pressure. This is done by giving t
pressure in units of the single-phase pressure, i.e., letting
axis beDP/DPs. This is straighforward, but note that th
single-phase pressure is a function of the capillary numbe
follows from Eqs.~3! and ~4! that DPs}Ca.

The fact that the capillary number, as it is defined in E
~3!, serves as the relevant combined parameter was also
tablished in the previous work@13#. This means that one ca
make changes to all the variables in Eq.~3!, but as long as
the capillary number is preserved the shape of the fractio
flow curve will be the same.

The characteristics of the fractional flow curve are as f
lows. Below a certain nonwetting saturation, approximat
5% for Ca53.231023, we observe that the nonwetting frac
tional flow is essentially zero, meaning that only the wetti
phase flows. Conversely, above a certain nonwetting sat
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RELATION BETWEEN PRESSURE AND FRACTIONAL . . . PHYSICAL REVIEW E 65 056310
tion, 85% for Ca53.231023, only the nonwetting phase
flows. Between these values both phases flow.

Imagine that there were no capillary forces between
two phases. Then both phases would have flown equally
ily through the porous network. The nonwetting fraction
flow would then be exactly equal to the nonwetting satu
tion. This is illustrated by the diagonal line in Fig. 2~a!. The
effect of having interfaces with capillary pressures can
thought of as a change from the ideal diagonal to the
tained curve. For low nonwetting saturations the fractio
nonwetting flow is lower than the saturation, i.e., under
diagonal. For high nonwetting saturation the nonwett
fractional flow is higher than the saturation, i.e., above
diagonal. Roughly we can say that the phase having
larger volume fraction gains, and hence it flows faster th
what one might naively expect. At some point the cur
cross the diagonal, and this is the point where neither ph
gains, compared to its volume fraction. This point is not
50% saturation, and it is clear that there is an asymm
between the wetting and nonwetting phases.

The pressure curve in Fig. 2~b! has two points plotted
with 3, at 0% and 100% saturation. These are single-ph
pressures, and since the two fluids have the same visco
the pressures are equal. For all other saturations, two ph
are present within the system. There are interfaces betw
the phases with capillary pressures. Motion of two flu
with interfaces through tubes requires more global press
than for the case of a single fluid. One might imagine tha
some cases, some or all of the present interfaces do
move, which is typically the situation when only one flu
flows. Still the global pressure must be higher than fo
single fluid because the nonmoving interfaces block
tubes, reduce possible pathways, and hence reduce the
cific permeability of the medium. As we can see from t
figure, the global pressure is higher in the entire two-ph
region than in the single-phase points.

The general nature of the pressure curve is that with
creasing saturation, the pressure increases monotonically
maximum value. Thereafter it decreases monotonically.
curve in Fig. 2~b! is generally smooth except at nonwettin
saturation of approximately 85% where the pressure dr
rather rapidly. We observe for now that this point is coinc
ing with the point were the nonwetting fractional flow b
comes unity. Also the character of the curve changes at
point. To the left it is curved while to the right it is nearly
straight line.

B. The dependency on Ca

Now we have learned that the capillary number serves
the relevant parameter for the fractional flow versus satu
tion curves. For two fluids having equal viscosity we ha
performed simulations for six different capillary numbe
which is shown in Figs. 3 and 4. The system size is
340 in all simulations. This size is sufficiently large to be
the asymptotic limit, but still so small that simulations can
done within reasonable amounts of time. For each capil
number we have chosen 19 different saturations from
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proximately 5% up to 95% in steps of 5%. Further, we ha
used five random seeds that provide five different geo
etries.

The shape of the fractional flow curve depends stron
on the capillary number. For high capillary numbers t
curve is approaching a straight line. For intermediate ca
lary numbers, as for the sample that was discussed in
preceding section, the curve has a clear S shape. For lo
capillary numbers the curve seems to approach a step f
tion.

The curves can be divided into three regions. The fi
being for low nonwetting saturation, where the nonwetti
fractional flow is zero. For the two highest capillary numbe
this region is almost vanishing. As the capillary number
lowered, this region grows in size. The third region is f
high nonwetting saturations, where the nonwetting fractio
flow becomes unity. The same general behavior is valid h
as for the first region. It becomes wider with decreasing c
illary number. The difference is that for a fixed capilla
number the region with unity nonwetting fractional flow
larger than the region with zero nonwetting fractional flo

FIG. 3. The figures show the nonwetting fractional flow as
function of nonwetting saturation for six different capillary num
bers. For high capillary numbers the curve is close to the diago
while for low capillary numbers the curve is S shaped. The range
saturations for which both phases are mobilized decreases with
creasing capillary number.
0-5
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HENNING ARENDT KNUDSEN AND ALEX HANSEN PHYSICAL REVIEW E65 056310
This means that there is no perfect symmetry between
two phases.

The second region is the central part where both pha
are mobilized. The width of this region decreases with
creasing capillary number. In the limit of infinite capillar
number, negligible capillary forces, the curve will approa
the diagonal and thus span the whole saturation range. In
opposite limit of small capillary number, it is reasonable
expect that the curve will approach a step function, althou
we have not explicitly checked this for capillary numbe
lower than those presented here. Between these limits t
is a range of capillary numbers where the central parts of
curves have an interesting structure.

As it was pointed out in the preceding section for C
53.231023, the curves lie above the diagonal for large no
wetting saturations and below for small nonwetting satu
tions. The interpretation is that the system favors transpor
the phase, the volume of which is more. This is not exac
true, since the crossover from favoring one phase to the o
is not at 50% nonwetting saturation, but at a somew
smaller value. Again the system is not perfectly symmetric

FIG. 4. The figures show the global pressure,1, as a function
of nonwetting saturation for six different capillary numbers. T
global pressures are normalized with respect to the single-p
pressureDPs as defined in Eq.~4!. Recall that for each capillary
number the total flux is fixed to a constant value. The curves
respond to the fractional flow curves in Fig. 3, and the derivate
the fractional flow curves are included here in a scaled versions.
This scaling and the relationship between the curves are treate
Sec. III C.
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the two phases. Actually the crossover point is a function
the capillary number. For very high Ca the crossover poin
close to zero. It approaches 50% when the capillary num
decreases. This situation corresponds to the problem of b
percolation in two dimensions, for which the percolatio
threshold is known to besc51/2 @27#. In percolation theory
sc is a critical bond probability and it corresponds to a cri
cal saturation in our problem. For small systems, history m
evolve in such a way that the systems have a saturation o
than 50% even though only one phase flows. However,
the average, or in an infinite system which is self-averagi
the limiting value is 50%. We have listed the values of t
crossover point in Table I.

Corresponding to the fractional flow curves in Fig. 3 a
the global pressure curves in Fig. 4. Also here the cur
depend strongly on the capillary number. It was pointed
in the preceding section for Ca53.231023 that the curve
increases monotonically to a maximum value and therea
decreases monotonically. This is true for the entire range
the capillary number that we have examined. The position
the maximum value increases with decreasing capillary nu
ber. The values are listed in Table I.

The pressure curves can be divided into three regions
like the fractional flow curves. At least for the three lowe
capillary numbers, Figs. 4~d!–4~f!, their boundaries are clea
and distinguishable. The first region is the one were the p
sure increases linearly with nonwetting saturation from
value at zero nonwetting saturation. For the three high
capillary numbers, Figs. 4~a!–4~c!, this region is almost van-
ishing.

The third region is where the curves decrease linea
with increasing nonwetting saturation towards the value
pressure at unity nonwetting saturation. This region can
seen in the entire range of capillary numbers. By inspect
we see that the region boundaries are the same in the p
sure curves as for the fractional flow curves. Thus the sa
comments regarding the width of the regions are valid for
pressure curves.

The second region is the central part of the curve. It
curved and has a nontrivial structure. For the lower capill
numbers the pressure increases abruptly at the boundari

se

r-
f

in

TABLE I. The crossover points of the fractional flow curve
~crossover!, the maximum points of the pressure curves~maximum
DP), and the turning points~turn! of the fractional flow curves for
six different capillary numbers. The points are all saturation valu
which are dimensionless numbers in the range from 0 to 1.
three points seem to coincide for the four lowest capillary numb
The crossover point differs from the other two for the two high
capillary numbers.

Ca Crossover MaximumDP Turn

3.231022 0.13~2! 0.19~4! 0.22~4!

1.031022 0.18~2! 0.22~5! 0.23~6!

3.231023 0.25~2! 0.28~5! 0.25~7!

1.031023 0.33~2! 0.31~4! 0.34~4!

3.231024 0.40~2! 0.38~5! 0.31~8!

1.031024 0.48~3! 0.45~6!
0-6
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the region. In this region both phases are mobilized. T
immediate conclusion is that more pressure is needed w
both phases are mobilized, as interfaces then are mobili
The relation between the fractional flow and the global pr
sure in this region will be the subject of the following se
tion.

The first and the third regions share several properties
their outer boundaries, 0% and 100%, respectively, the
ues of the global pressure are equal, and equal to the sin
phase pressure. Also at the inner boundaries of these reg
the global pressures have the same value. That is to sa
far as both inner boundaries are distinguishable, we
make this observation. Physically the inner boundaries
just at the saturation values where there is an onset of m
lization of the other phase. The fact that the pressures are
same here is the same as saying that in this respect the
symmetry between the two phases.

Within these regions one of the phases is immobiliz
Still there is a linear dependency of the global pressure
the saturation within the regions. The reason for this cha
in pressure cannot come from the increased pressure n
sary to move an increased number of interfaces, since
interfaces generally are pinned to fixed positions when o
one phase flows. When there is an increased volume of
phase that is immobilized, then there is less available volu
for the other phase to move in. This is a geometrical c
straint. The specific permeability of the single phase t
flows will decrease within these two regions as the satura
of other phase increases. Thus more and more pressu
needed to maintain a constant total flux.

This qualitative explanation does not account for the f
that these parts of the curves are straight lines. If the imm
bilized phases were pinned to positions in the network t
were more or less random, then to a first approximatio
linear increase in the saturation of the immobile phase wo
lead to a linear decrease in the effective system size for
mobile phase. In turn, that would lead to a linear increase
global pressure.

The next question is, why is the third region wider th
the first region. According to the first approximation reaso
ing above, they should be equal. Going a little beyond t
approximation, we know that a bubble of nonwetting fluid
more likely to get pinned around a node. Its most sta
position is when it is bounded by menisci in all neighbori
tubes, and when they are in the half parts of the tubes, w
are closer to the node. Whatever direction the bubble
pushed in it will have to pass the threshold in the respec
tube. Bubbles of wetting fluid have opposite preferen
Their most stable position is within a tube. With two boun
ing menisci placed on each side of the center of the tube,
wetting bubble is stable to fluctuations in both directions.
course, bubbles come in a range of sizes and this asymm
between the two phases is more pronounced for sma
bubbles. On an average, we can say that the nonwe
phase when immobilized will block more nodes than tub
The wetting phase when immobilized will occupy compa
tively more tubes than nodes. It is more effective to blo
nodes than tubes, and this explains why the nonwet
phase is more effective than the wetting phase in reduc
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the specific permeability of the other fluid. The result is th
the pressure curve is steeper in the first region than in
third, and thus the first region is narrower than the third.

C. Relationship betweenF nw and DP

This section is devoted to the study of the central range
saturation, where both phases are mobilized. In this reg
we have defined the crossover point as the point where
fractional flow is equal to the saturation. On both sides
this point the phase whose saturation is higher gains in
sense that the fractional flow is higher than the saturation
this region the fractional flow curves are roughly S shap
In particular, for the capillary numbers in Figs. 3~c! and 3~d!,
the curvature changes approximately at the crossover p
Whether this is coincidental or not will be discussed lat
We have determined the derivative of all the six curv
From these data we have estimated the turning points of
curvature, which are listed in Table I.

The differentiation has been done in a straightforwa
way, except at the boundaries of the central region. Outs
the region the derivative is zero and inside the region
curves are smooth. However, right at the boundary the fr
tional flow curves have, for lower capillary numbers, a bre
where the derivative almost diverges. We have ignored th
breaking points.

We find that the derivative has the same shape as
global pressure in the central region. This is shown in Fig
where the derivative is marked bys. By the same shape w
mean that for each capillary number we can find two dim
sionless constantsA andB for which

A~Ca!
dFnw

dSnw
1B~Ca!5

DP

DPs
. ~5!

The quality of the overlap of the two sets of data is ve
good for the four highest capillary numbers, Figs. 4~a!–4~d!.
For the fifth, Fig. 4~e!, the quality is fair. For the lowes
capillary number the points start to spread out so much th
comparison of shapes is difficult. We have included the
rivative here to get an estimate for the scaling coefficientA
and B. The values of the scaling coefficients are listed
Table II.

In order to understand the meaning of Eq.~5!, it is useful
to rewrite the expression in the terminology of mobilities a
relative permeabilities@25,26#. The nonwetting relative per
meability kr,nw is defined by

TABLE II. The scaling factorsA andB from Eq. ~5! are shown
for the six capillary numbers. They are used in the scaling of
derivative of the fractional flow curves, which is shown in Fig. 4

Ca A(Ca) B(Ca)

3.231022 0.22 0.87
1.031022 0.35 1.21
3.231023 0.83 1.84
1.031023 1.47 3.83
3.231024 3.22 6.90
1.031024 5.89 17.6
0-7
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Qnw~Snw!

S
5

kr,nw~Snw!k

mnw

DP~Snw!

L
, ~6!

where the fraction

Mnw~Snw!5
kr,nw~Snw!

mnw
~7!

is the nonwetting mobility. Here the constantk is the specific
permeability as was defined in Eq.~4!. Substituting fork,
keeping in mind that both phases have the same viscositm,
and expressingQnw in terms ofFnw , we obtain

kr,nw~Snw!5Fnw~Snw!
DPs

DP~Snw!
. ~8!

Likewise, the result for the wetting relative permeability i

kr,w~Snw!5Fw~Snw!
DPs

DP~Snw!
, ~9!

where the single-phase pressure dropDPs is the same be-
cause we consider two fluids with equal viscosities. The re
tive permeabilities for the capillary number Ca53.231023

are shown in Fig. 5. These curves are comparable to exp
mentally obtained relative permeability curves, which a
frequently used in the petroleum industry@25#.

Analogously to nonwetting mobility in Eq.~7!, we define
wetting mobility as

Mw~Snw!5
kr,w~Snw!

mw
~10!

and the total mobility as

M ~Snw!5Mnw~Snw!1Mw~Snw!. ~11!

In the simulations, the total flux has been held constan
can be expressed by using Eq.~6!, and its wetting counter-
part, as

Qtot5Qnw1Qw5S~Mnw1Mw!k
DP

L

5
kS

L
M ~Snw!DP~Snw!, ~12!

FIG. 5. The nonwetting and wetting relative permeabilities
shown as a function of nonwetting saturation. They are define
Eqs.~8! and~9!. The capillary number is Ca53.231023, and these
curves correspond directly to the fractional flow and press
curves that are found in Fig. 2.
05631
-

ri-
e

It

which can be solved forDP; in combination with Eq.~4! this
is right-hand side of Eq.~5!. Likewise, the fractional flow
can be expressed in terms of the mobilities,

Fnw5
Mnw

M
. ~13!

Thus the scaling relation in Eq.~5! can be rewritten as

A
d

dSnw
S Mnw~Snw!

M ~Snw! D1B5
1

mM ~Snw!
, ~14!

whereA andB are independent of the saturation. Differen
ating once more, we find

A
d2

dSnw
2 S Mnw~Snw!

M ~Snw! D52
1

mM2

dM~Snw!

dSnw
. ~15!

The insight given by this equation is as follows. Genera
the nonwetting and wetting mobilities are considered as
independent functions of saturation. The result in Eq.~15!
shows that the two mobilities are related through an eq
tion.

The dependence that we have found so far is restricte
the case where both phases have equal viscosities. Wh
the result will be extendable to the case of two differe
viscosities in some form is an interesting question, but
beyond the scope of the present work. The validity is a
restricted to capillary numbers in the range 3.231024,Ca
,3.231022. For higher capillary numbers there is little re
son to expect any interesting behavior since the asympt
behavior of the fractional flow curve is the straight diagon
Lower capillary numbers than this range are more interes
also from a practical point of view, since they may occur
reservoir conditions. Challenges in this region of parame
space are the increased history dependence of the result
the considerably increased CPU time.

The validity of Eq.~5! comes from visual inspection o
the data collapse in Fig. 4. Visually it seems that for ea
capillary number, the two curves have their maximum va
at the same saturation. We wish to discuss whether th
maximum points are coincidental with the crossover poi
on the fractional flow curves. Estimates for all three poin
for each capillary number are listed in Table I. The err
estimates come from the data analysis, and for the turn
point, precision is lost in the differentiation process. T
crossover points are sensitive to systematic errors, in part
lar, for high capillary numbers. The reason is that the fr
tional flow curve becomes increasingly parallel to the dia
onal for increasing capillary numbers. A small vertical sh
of the fractional flow curve will give a large shift in th
crossing point. From the values in the table we observe
the three points coincide for the four lowest capillary nu
bers within the error bars given. That is, the turning point
the two lowest capillary numbers are very uncertain and
listed, respectively. For the two highest capillary numbers
crossover point is not equal to the maximum pressure wit

e
in

e
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the error bars, but again one may speculate the possibilit
systematic errors in these two points.

In conclusion, we cannot say whether the crossover p
is related with the maximum point. However, it is an inte
esting question because it suggests to look for effective
oretical descriptions, starting at a point having this supp
edly nice behavior. Experimental work on this problem w
provide means of checking both Eq.~5! and the possible
relation between the crossover and the maximum pres
point.

It is interesting to look at how the crossover point a
scaling factors vary with the capillary number. We argu
that the crossover point should approach the percola
thresholdsc in the limit of small capillary numbers. This
limit turns out to be not zero, but a lower critical capilla
number Cacrit . We denote the crossover point by the cro
over saturations. The crossover point as a function of th
logarithm of the capillary number is shown in Fig. 6. That
the capillary number is normalized with respect to the criti
capillary number, which is determined from fitting the fo
lowing relation to the data points:

s5sc2a lnS Ca

Cacrit
D . ~16!

Heresc is known so that the value ofa50.066 is the slope of
a straight line fit, and the value of Cacrit57.331025 is the
one that makes the line meet thes axis atsc50.5.

The physical idea behind having a critical capillary nu
ber is that at some point, the viscous forces of the flow
fluids and the pressure gradient will become so small
they cannot mobilize any more interfaces. In that situat
one of the phases will have a continuous pathway to flow
The other phase is pinned to its current locations. There
any further decrease in the capillary number below the c
cal value, will not add anything to the picture; one pha
flows.

The scaling coefficientsA andB from Eq.~5! are listed in
Table II. The dimensions of these coefficients are the sam
for pressure. The immediate tentative interpretation of
meaning ofA and B are as follows. The constantB is the
threshold pressure that is applied right at the borders of
central region of the fractional flow curves, the press
where there is an onset of mobility of both phases. The fa

FIG. 6. The crossover pointss from Table I are shown as a
function of the logarithm of the capillary number. The straight li
fit is made on the basis of the four lowest capillary numbers, wh
are closest to the critical capillary number.
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A is the one that must be multiplied to the derivative of t
fractional flow curve in order to obtain the pressure jum
from the onset levelB to the actual pressure at a given sa
ration in the central region.

It is clear that the pressure is an increasing function of
capillary number. Therefore it is natural thatA and B are
functions of the capillary number. The functional forms a
presented in Figs. 7 and 8. We can say that the explanatio
these two power laws is related to the width of the cen
region. Also the extent to which interfaces are put in moti
plays a role. Both these quantities depend on the capil
number. We have so far not been able to construct so
explanations for these power laws, and present them as
servations only.

IV. DISCUSSION

The problem of two-phase flow in porous media is co
plex. We attack the problem with a network simulator
pore level. The model is coarse grained on the level of
internal structure of the pores. The current use of the mo
is generic, but specific use is possible with few modific
tions. Useful average properties of porous media can be
tained, which may be used as parameters on larger rese
scale simulations.

In this paper we present results for two-dimension
square networks of tubes. This topology is chosen for c
venience. It is possible to extend the work to 3D and cho
both regular and irregular connectivities. The choice o
particular topology is one aspect of making the model s
cific to a given porous medium. Further, average tube rad
and the width of the tube radius distribution are importa

h

FIG. 7. The scaling factorA from Eq. ~5!. Data are taken from
Table II.

FIG. 8. The scaling factorB from Eq. ~5!. Data are taken from
Table II. The value ofBc is the one that gives the best power law fi
Bc50.65.
0-9
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parameters that should be adjusted for the same purp
Here, we have used a distribution that corresponds to exp
mental sizes in Hele-Shaw cells with glass beads, which h
been used experimentally@28#. Further work and compari
sons with these experiments may provide insight into h
the model can be callibrated in order to become quan
tively precise.

The most important characteristic of the simulations
this paper, which sets them apart from other simulations
the biperiodic boundary conditions. This makes the sys
closed, with a fixed saturation of each of the two phases.
six different capillary numbers we run the systems until th
reach a steady state, where the flow is characterized by c
plex bubble dynamics. The notion of imbibition and draina
are not adequate to describe this situation, which would a
be the situation deep inside the reservoirs. We find aver
flow properties as a function of the saturation. These pro
ties are the fractional flow and the global pressure drop, fr
which, in turn, one can calculate relative permeabilities a
mobilities.

In particular, for the case of two phases having equal v
cosities, we find that the derivative of the fractional flow
related to the global pressure drop, see Eq.~5!. This relation
ch

ac

e

-
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ties together these two properties, which generally are
lieved to be independent. We have shown how this statem
can be transformed into the language of relative permea
ties and mobilities, which as a consequence are not inde
dent but must obey Eq.~15!.

An important note here is that this result so far has o
been established by numerical work. It will be very intere
ing to get an experimental verification of this result. Hop
fully, after an experimental verification, this equation can
of assistance in the measurement of two-phase flow pro
ties. In the experimental situation it is difficult to measure
variables precisely. The saturation can, e.g., be reconstru
from the pressure and fractional flow relationship a
Eq. ~5!.
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